Purpose: Local tumor growth is a major cause of morbidity and mortality in nearly 30% of patients with pancreatic ductal adenocarcinoma (PDAC). Radiotherapy (RT) is commonly used for local disease control in PDAC, but efficacy is limited. We studied the impact of...
SARRP
Xstrahl SARRP features in new Bioluminescence Tomography paper
A new paper titled “Bioluminescence Tomography – Guided Radiation Therapy for Preclinical Research” has been published in the International Journal of Radiation Oncology. The Xstrahl SARRP system was used for the research conducted in the published paper, the study details how Bioluminescence has enabled researchers to precisely visualize their tumors in vivo.
Low-Intensity Focused Ultrasound Induces Reversal of Tumor-Induced T Cell Tolerance and Prevents Immune Escape.
In preclinical radiation research, it is challenging to localize soft tissue targets based on cone beam computed tomography (CBCT) guidance. As a more effective method to localize soft tissue targets, we developed an online bioluminescence tomography (BLT) system for small-animal radiation research platform (SARRP). We demonstrated BLT-guided radiation therapy and validated targeting accuracy based on a newly developed reconstruction algorithm.
Zhang B, Wang KK, Yu J, Eslami S, Iordachita I, Reyes J, Malek R, Tran PT, Patterson MS, Wong JW.
Download Paper
Bioluminescence Tomography-Guided Radiation Therapy for Preclinical Research
PURPOSE: In preclinical radiation research, it is challenging to localize soft tissue targets based on cone beam computed tomography (CBCT) guidance. As a more effective method to localize soft tissue targets, we developed an online bioluminescence tomography (BLT)...
Proposal for a Simple and Efficient Monthly Quality Management Program Assessing the Consistency of Robotic Image-Guided Small Animal Radiation Systems
Modern pre-clinical radiation therapy (RT) research requires high precision and accurate dosimetry to facilitate the translation of research findings into clinical practice. Several systems are available that provide precise delivery and on-board imaging capabilities,...
Comprehensive quality assurance phantom for the small animal radiation research platform (SARRP)
PURPOSE: To develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the Small Animal Radiation Research Platform (SARRP). METHODS AND MATERIALS: A QA phantom was developed for carrying out daily, monthly and annual QA...
Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research
PURPOSE: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways...
MRI-Only Based Radiotherapy Treatment Planning for the Rat Brain on a Small Animal Radiation Research Platform (SARRP).
Computed tomography (CT) is the standard imaging modality in radiation therapy treatment planning (RTP). However, magnetic resonance (MR) imaging provides superior soft tissue contrast, increasing the precision of target volume selection. We present MR-only based RTP for a rat brain on a small animal radiation research platform (SARRP) using probabilistic voxel classification with multiple MR sequences. Six rat heads were imaged, each with one CT and five MR sequences. The MR sequences were: T1-weighted, T2-weighted, zero-echo time (ZTE), and two ultra-short echo time sequences with 20 μs (UTE1) and 2 ms (UTE2) echo times. CT data were manually segmented into air, soft tissue, and bone to obtain the RTP reference. Bias field corrected MR images were automatically segmented into the same tissue classes using a fuzzy c-means segmentation algorithm with multiple images as input. Similarities between segmented CT and automatic segmented MR (ASMR) images were evaluated using Dice coefficient. Three ASMR images with high similarity index were used for further RTP. Three beam arrangements were investigated. Dose distributions were compared by analysing dose volume histograms. The highest Dice coefficients were obtained for the ZTE-UTE2 combination and for the T1-UTE1-T2 combination when ZTE was unavailable. Both combinations, along with UTE1-UTE2, often used to generate ASMR images, were used for further RTP. Using 1 beam, MR based RTP underestimated the dose to be delivered to the target (range: 1.4%-7.6%). When more complex beam configurations were used, the calculated dose using the ZTE-UTE2 combination was the most accurate, with 0.7% deviation from CT, compared to 0.8% for T1-UTE1-T2 and 1.7% for UTE1-UTE2. The presented MR-only based workflow for RTP on a SARRP enables both accurate organ delineation and dose calculations using multiple MR sequences. This method can be useful in longitudinal studies where CT’s cumulative radiation dose might contribute to the total dose.
Shandra Gutierrez, Benedicte Descamps, Christian Vanhove
Download Paper
Stereotactic Radiation Therapy Augments Antigen-Specific PD-1-Mediated Antitumor Immune Responses via Cross-Presentation of Tumor Antigen
The immune-modulating effects of radiotherapy (XRT) have gained considerable interest recently, and there have been multiple reports of synergy between XRT and immunotherapy. However, additional preclinical studies are needed to demonstrate the antigen-specific nature...