PURPOSE: Immune responses to antigens originating in the central nervous system (CNS) are generally attenuated, as collateral damage can have devastating consequences. The significance of this finding for the efficacy of tumor-targeted immunotherapies is largely...
Resource Type
Selective Inhibition of Parallel DNA Damage Response Pathways Optimizes Radiosensitization of Glioblastoma Stem-like Cells.
Glioblastoma is the most common form of primary brain tumor in adults and is essentially incurable. Despite aggressive treatment regimens centered on radiotherapy, tumor recurrence is inevitable and is thought to be driven by glioblastoma stem-like cells (GSC) that are highly radioresistant. DNA damage response pathways are key determinants of radiosensitivity but the extent to which these overlapping and parallel signaling components contribute to GSC radioresistance is unclear. Using a panel of primary patient-derived glioblastoma cell lines, we confirmed by clonogenic survival assays that GSCs were significantly more radioresistant than paired tumor bulk populations. DNA damage response targets ATM, ATR, CHK1, and PARP1 were upregulated in GSCs, and CHK1 was preferentially activated following irradiation. Consequently, GSCs exhibit rapid G2-M cell-cycle checkpoint activation and enhanced DNA repair. Inhibition of CHK1 or ATR successfully abrogated G2-M checkpoint function, leading to increased mitotic catastrophe and a modest increase in radiation sensitivity. Inhibition of ATM had dual effects on cell-cycle checkpoint regulation and DNA repair that were associated with greater radiosensitizing effects on GSCs than inhibition of CHK1, ATR, or PARP alone. Combined inhibition of PARP and ATR resulted in a profound radiosensitization of GSCs, which was of greater magnitude than in bulk populations and also exceeded the effect of ATM inhibition. These data demonstrate that multiple, parallel DNA damage signaling pathways contribute to GSC radioresistance and that combined inhibition of cell-cycle checkpoint and DNA repair targets provides the most effective means to overcome radioresistance of GSC.
Shafiq U Ahmed, Ross Carruthers, Lesley Gilmour, Salih Yildirim, Colin Watts and Anthony J Chalmers
Download Paper
Intravesical Liposomal Tacrolimus Protects against Radiation Cystitis Induced by 3-Beam Targeted Bladder Radiation
PURPOSE: We primarily determined whether the small animal radiation research platform could create a rat radiation cystitis model via targeted bladder irradiation (phase I). The response to treating early phase radiation cystitis in rats with transurethral catheter...
Randomized multicenter follow-up trial on the effect of radiotherapy on painful heel spur (plantar fasciitis) comparing two fractionation schedules with uniform total dose: first results after three months’ follow-up
BACKGROUND: Our first trial on radiotherapy for painful heel spur published in 2012 comparing the analgesic effect of a standard dose (6 × 1.0Gy within three weeks) to that of a very low one (6 × 0.1Gy within three weeks) resulted in a highly significant superiority...
Identification of suitable endogenous controls for gene and miRNA expression studies in irradiated prostate cancer cells.
This study aimed to to evaluate the stability of commonly used endogenous control genes for messenger RNA (mRNA) (N = 16) and miRNAs (N = 3) expression studies in prostate cell lines following irradiation. The stability of endogenous control genes expression in irradiated (6 Gy) versus unirradiated controls was quantified using NormFinder and coefficient of variation analyses. HPRT1 and 18S were identified as most and least stable endogenous controls, respectively, for mRNA expression studies in irradiated prostate cells. SNORD48 and miR16 miRNA endogenous controls tested were associated with low coefficient of variations following irradiation (6 Gy). This study highlights that commonly used endogenous controls can be responsive to radiation and validation is required prior to gene/miRNAs expression studies.
H Lawlor, Armelle Meunier, Niamh McDermott, Thomas Lynch and Laure Marignol
Download Paper
Acceptance, commissioning and clinical use of the WOmed T-200 kilovoltage X-ray therapy unit
OBJECTIVE: The objective of this work was to characterize the performance of the WOmed T-200-kilovoltage (kV) therapy machine. METHODS: Mechanical functionality, radiation leakage, alignment and interlocks were investigated. Half-value layers (HVLs) (first and second...
Xstrahl medical to showcase RADiant at UKRO, June 8th to 10th.
Xstrahl Medical (Booth 20) will introduce the exciting new Photoelectric Therapy system at the 8th UK Radiation Oncology (UKRO) Conference from the 8th to 10th of June at the Ricoh Arena, Coventry.
Xstrahl to showcase RADiant at DEGRO 2015 in Hamburg, Germany
Xstrahl will attend this year’s Deutschen Gesellschaft für Radioonkologie e.V. (DEGRO) in Hamburg, Germany from 25th – 28th June. There will be 4,000 attendees from around Europe looking to get the latest information and technology in the name of science.
Comprehensive quality assurance phantom for the small animal radiation research platform (SARRP)
PURPOSE: To develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the Small Animal Radiation Research Platform (SARRP). METHODS AND MATERIALS: A QA phantom was developed for carrying out daily, monthly and annual QA...