In this study, we investigated the accuracy of using off-line bioluminescence imaging (BLI) and tomography (BLT) to guide irradiation of small soft tissue targets on a small animal radiation research platform (SARRP) with on-board cone beam CT (CBCT) capability. A...
Radiation Research
High throughput film dosimetry in homogeneous and heterogeneous media for a small animal irradiator
PURPOSE: We have established a high-throughput Gafchromic film dosimetry protocol for narrow kilo-voltage beams in homogeneous and heterogeneous media for small-animal radiotherapy applications. The kV beam characterization is based on extensive Gafchromic film...
Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas
PURPOSE: Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults, and radiation is one of the main treatment modalities. However, cure rates remain low despite best available therapies. Immunotherapy is a promising modality that could work...
Comparing and evaluating the efficacy of the TOR18FG Leeds test X-ray phantom for T-rays.
The commercially available X-ray fluoroscopy quality assurance phantom, the Leeds test object TOR18FG, was found to be suitable to assess T-ray image quality in the range (0.1-0.4) THz at a depth of 0.5 cm. Previous to this only custom made phantoms, made especially...
Radiobiological Studies Using Gamma and X Rays
The research relates to possibly replacing 137CsCl irradiators used in radiobiological research involving cells in culture and small animals with an X-RAD 320 Unit (X-ray source[4]) with energies higher than for a typical X-ray irradiator. The objective of this...
Radiotherapy for achillodynia : results of a single-center prospective randomized dose-optimization trial
BACKGROUND AND PURPOSE: The aim of this study was to compare the efficacy of two different dose-fractionation schedules for radiotherapy of patients with achillodynia. PATIENTS AND METHODS: Between February 2006 and February 2010, 112 consecutive evaluable patients...
Efficacy of low-dose radiotherapy in painful gonarthritis: experiences from a retrospective East German bicenter study
PURPOSE: To evaluate the efficacy of low-dose radiotherapy in painful gonarthritis. METHODS: We assessed the medical records of 1037 patients with painful gonarthritis who had undergone low-dose radiotherapy between 1981 and 2008. The subjective patient perception of...
Novel Hsp90 inhibitor NVP-AUY922 radiosensitizes prostate cancer cells
Outcomes for poor-risk localized prostate cancers treated with radiation are still insufficient. Targeting the "non-oncogene" addiction or stress response machinery is an appealing strategy for cancer therapeutics. Heat-shock-protein-90 (Hsp90), an integral member of...
Mechanisms of blood flow and hypoxia production in rat 9L-epigastric tumors.
Classical descriptions of tumor physiology suggest two origins for tumor hypoxia; steady-state (diffusion-limited) hypoxia and cycling (perfusionmodulated) hypoxia. Both origins, primarily studied and characterized in murine models, predict relatively small, isolated foci or thin shells of hypoxic tissue interspersed with contrasting oxic tissue. These foci or shells would not be expected to scale with overall tumor size since the oxygen diffusion distance (determined by oxygen permeability and tissue oxygen consumption rate) is not known to vary dramatically from tumor to tumor. We have identified much larger (macroscopic) regions of hypoxia in rat gliosarcoma tumors and in larger human tumors (notably sarcomas and high-grade glial tumors), as indicated by biochemical binding of the hypoxia marker, EF5. Thus, we considered an alternative cause of tumor hypoxia related to a phenomenon first observed in window-chamber tumor models: namely longitudinal arteriole gradients. Although longitudinal arteriole gradients, as originally described, are also microscopic in nature, it is possible for them to scale with tumor size if tumor blood flow is organized in an appropriate manner. In this organization, inflowing blood would arise from relatively well-oxygenated sources and would branch and then coalesce to poorly-oxygenated outflowing blood over distances much larger than the length of conventional arterioles (multi-millimeter scale). This novel concept differs from the common characterization of tumor blood flow as disorganized and/or chaotic. The organization of blood flow to produce extended longitudinal gradients and macroscopic regional hypoxia has many important implications for the imaging, therapy and biological properties of tumors. Herein, we report the first experimental evidence for such blood flow, using rat 9L gliosarcoma tumors grown on the epigastric artery/vein pair.
Cameron J. Koch / W. Timothy Jenkins / Kevin W. Jenkins / Xiang Yang Yang / A. Lee Shuman / Stephen Pickup / Caitlyn R. Riehl / Ramesh Paudyal / Harish Poptani / Sydney M. Evans
Download Paper