The hypothalamus is the central regulator of a broad range of homeostatic and instinctive physiological processes, such as the sleep-wake cycle, food intake, and sexually dimorphic behaviors. These behaviors can be modified by various environmental and physiological cues, although the molecular and cellular mechanisms that mediate these effects remain poorly understood. Recently, it has become clear that both the juvenile and adult hypothalamus exhibit ongoing neurogenesis, which serve to modify homeostatic neural circuitry. In this report, we share new findings on the contributions of sex-specific and dietary factors to regulating neurogenesis in the hypothalamic mediobasal hypothalamus, a recently identified neurogenic niche. We report that high fat diet (HFD) selectively activates neurogenesis in the median eminence (ME) of young adult female but not male mice, and that focal irradiation of the ME in HFD-fed mice reduces weight gain in females but not males. These results suggest that some physiological effects of high fat diet are mediated by the stimulation of ME neurogenesis in a sexually dimorphic manner. We discuss these results in the context of recent advances in understanding the cellular and molecular mechanisms that regulate neurogenesis in postnatal and adult hypothalamus.
Daniel A. Lee, Sooyeon Yoo, Thomas Pak, Juan Salvatierra, Esteban Velarde, Susan Aja, and Seth Blackshaw
Download Paper
Resources
Radiosensitization of Pancreatic Cancer Cells In Vitro and In Vivo through Poly (ADP-ribose) Polymerase Inhibition with ABT-888
OBJECTIVES: To determine whether poly (ADP-ribose) polymerase-1/2 (PARP-1/2) inhibition enhances radiation-induced cytotoxicity of pancreatic adenocarcinoma in vitro and in vivo, and the mechanism by which this occurs. METHODS: Pancreatic carcinoma cells were treated...
Use of Single- versus Multiple-Fraction Palliative Radiation Therapy for Bone Metastases: Population-Based Analysis of 16,898 Courses in a Canadian Province
PURPOSE: There is abundant evidence that a single fraction (SF) of palliative radiation therapy (RT) for bone metastases is equivalent to more protracted and costly multiple fraction courses. Despite this, there is low utilization of SFRT internationally. We sought to...
Predictors of recurrence after radiotherapy for non-melanoma skin cancer
Predictive factors of recurrence were examined in 448 non-melanoma skin cancers (72% basal cell carcinoma, 28% squamous cell carcinoma) treated with radiotherapy. The overall recurrence rate was 15.8% at a median follow-up of 18.4 months. In multivariate analysis,...
Preclinical evaluation of the combination of mTOR and proteasome inhibitors with radiotherapy in malignant peripheral nerve sheath tumors
About one half of malignant peripheral nerve sheath tumors (MPNST) have Neurofibromin 1 (NF1) mutations. NF1 is a tumor suppressor gene essential for negative regulation of RAS signaling. Survival for MPNST patients is poor and we sought to identify an effective...
The Erlangen Dose Optimization trial for low-dose radiotherapy of benign painful elbow syndrome. Long-term results.
BACKGROUND AND PURPOSE: To evaluate the long-term efficacy of pain reduction by two dose fractionation schedules used for low-dose radiotherapy of painful elbow syndrome. PATIENTS AND METHODS: Between February 2006 and February 2010, 199 evaluable patients were...
Advances in kilovoltage x-ray beam dosimetry
This topical review provides an up-to-date overview of the theoretical and practical aspects of therapeutic kilovoltage x-ray beam dosimetry. Kilovoltage x-ray beams have the property that the maximum dose occurs very close to the surface and thus, they are...
Single versus multiple fractions of repeat radiation for painful bone metastases: a randomised, controlled, non-inferiority trial
BACKGROUND: Although repeat radiation treatment has been shown to palliate pain in patients with bone metastases from multiple primary origin sites, data for the best possible dose fractionation schedules are lacking. We aimed to assess two dose fractionation...
Gold-Loaded Polymeric Micelles for Computed Tomography-Guided Radiation Therapy Treatment and Radiosensitization.
Gold nanoparticles (AuNPs) have generated interest as both imaging and therapeutic agents. AuNPs are attractive for imaging applications since they are nontoxic and provide nearly three times greater X-ray attenuation per unit weight than iodine. As therapeutic agents, AuNPs can sensitize tumor cells to ionizing radiation. To create a nanoplatform that could simultaneously exhibit long circulation times, achieve appreciable tumor accumulation, generate computed tomography (CT) image contrast, and serve as a radiosensitizer, gold-loaded polymeric micelles (GPMs) were prepared. Specifically, 1.9 nm AuNPs were encapsulated within the hydrophobic core of micelles formed with the amphiphilic diblock copolymer poly(ethylene glycol)-b-poly(ε-capralactone). GPMs were produced with low polydispersity and mean hydrodynamic diameters ranging from 25 to 150 nm. Following intravenous injection, GPMs provided blood pool contrast for up to 24 h and improved the delineation of tumor margins via CT. Thus, GPM-enhanced CT imaging was used to guide radiation therapy delivered via a small animal radiation research platform. In combination with the radiosensitizing capabilities of gold, tumor-bearing mice exhibited a 1.7-fold improvement in the median survival time, compared with mice receiving radiation alone. It is envisioned that translation of these capabilities to human cancer patients could guide and enhance the efficacy of radiation therapy.
Al Zaki A, Joh D, Cheng Z, De Barros AL, Kao G, Dorsey J, Tsourkas A.
Download Paper