Although surgery is usually the first-line treatment for nonmelanoma skin cancers, radiotherapy (RT) may be indicated in selected cases. Radiation therapy as primary therapy can result in excellent control rates, cosmetics, and quality of life. Brachytherapy is a...
Resources
Area of Interest: Radiation Therapy
Dietary and sex-specific factors regulate hypothalamic neurogenesis in young adult mice.
The hypothalamus is the central regulator of a broad range of homeostatic and instinctive physiological processes, such as the sleep-wake cycle, food intake, and sexually dimorphic behaviors. These behaviors can be modified by various environmental and physiological cues, although the molecular and cellular mechanisms that mediate these effects remain poorly understood. Recently, it has become clear that both the juvenile and adult hypothalamus exhibit ongoing neurogenesis, which serve to modify homeostatic neural circuitry. In this report, we share new findings on the contributions of sex-specific and dietary factors to regulating neurogenesis in the hypothalamic mediobasal hypothalamus, a recently identified neurogenic niche. We report that high fat diet (HFD) selectively activates neurogenesis in the median eminence (ME) of young adult female but not male mice, and that focal irradiation of the ME in HFD-fed mice reduces weight gain in females but not males. These results suggest that some physiological effects of high fat diet are mediated by the stimulation of ME neurogenesis in a sexually dimorphic manner. We discuss these results in the context of recent advances in understanding the cellular and molecular mechanisms that regulate neurogenesis in postnatal and adult hypothalamus.
Daniel A. Lee, Sooyeon Yoo, Thomas Pak, Juan Salvatierra, Esteban Velarde, Susan Aja, and Seth Blackshaw
Download Paper
Use of Single- versus Multiple-Fraction Palliative Radiation Therapy for Bone Metastases: Population-Based Analysis of 16,898 Courses in a Canadian Province
PURPOSE: There is abundant evidence that a single fraction (SF) of palliative radiation therapy (RT) for bone metastases is equivalent to more protracted and costly multiple fraction courses. Despite this, there is low utilization of SFRT internationally. We sought to...
Predictors of recurrence after radiotherapy for non-melanoma skin cancer
Predictive factors of recurrence were examined in 448 non-melanoma skin cancers (72% basal cell carcinoma, 28% squamous cell carcinoma) treated with radiotherapy. The overall recurrence rate was 15.8% at a median follow-up of 18.4 months. In multivariate analysis,...
Single versus multiple fractions of repeat radiation for painful bone metastases: a randomised, controlled, non-inferiority trial
BACKGROUND: Although repeat radiation treatment has been shown to palliate pain in patients with bone metastases from multiple primary origin sites, data for the best possible dose fractionation schedules are lacking. We aimed to assess two dose fractionation...
Modality comparison for small animal radiotherapy: A simulation study.
Efficient and error-free DNA repair is critical for safeguarding genome integrity, yet it is also linked to radio- and chemoresistance of malignant tumors. miR-34a, a potent tumor suppressor, influences a large set of p53-regulated genes and contributes to p53-mediated apoptosis. However, the effects of miR-34a on the processes of DNA damage and repair are not entirely understood. We explored tet-inducible miR-34a-expressing human p53 wild-type and R273H p53 mutant GBM cell lines, and found that miR-34a influences the broad spectrum of 53BP1-mediated DNA damage response. It escalates both post-irradiation and endogenous DNA damage, abrogates radiation-induced G 2/M arrest and drastically increases the number of irradiated cells undergoing mitotic catastrophe. Furthermore, miR-34a downregulates 53BP1 and inhibits its recruitment to the sites of DNA double-strand breaks. We conclude that whereas miR-34a counteracts DNA repair, it also contributes to the p53-independent elimination of distressed cells, thus preventing the rise of genomic instability in tumor cell populations. These properties of miR-34a can potentially be exploited for DNA damage-effecting therapies of malignancies.
Kofman AV, Kim J, Park SY, Dupart E, Letson C, Bao Y, Ding K, Chen Q, Schiff D, Larner J, Abounader R.
Download Paper
Evidence-based treatment for low-risk basal cell carcinoma
Basal-cell carcinoma is the most common cancer worldwide, with more than 2 million lesions treated in the USA in 2006.1,2 In the UK, many basal-cell carcinomas are not registered, which greatly underestimates the numbers of individuals affected.3 Incidence is...
Effect of field size and length of plantar spur on treatment outcome in radiation therapy of plantar fasciitis: the bigger the better?
PURPOSE: Radiation therapy is well established in the treatment of painful plantar fasciitis or heel spur. A retrospective analysis was conducted to investigate the effect of field definition on treatment outcome and to determine the impact of factors potentially...
Exposure to hypoxia following irradiation increases radioresistance in prostate cancer cells.
Tumor hypoxia is a common feature of prostate tumors associated with the stabilization of hypoxia-inducible-factor 1alpha (HIF-1α) and poor prognosis following radiation therapy. Lack of oxygen at the time of irradiation is associated with radioresistance, but recent reports suggest radioresponse is also modulated by the dynamic nature of tumor hypoxia.
Derek Hennessey, Lynn Martin, Anne Atzberger, Thomas Lynch, Donal Hollywood and Laure Marignol
Download Paper