Navigation

Muriplan, the new pre-clinical treatment planning system for the Xstrahl Small Animal Radiation Research Platform (SARRP).

Specialised Software

Xstrahl have developed a unique dose planning, verification, and treatment delivery system; Muriplan. This intuitive system has been designed to enable researchers to both plan and execute experiments. This fully integrated software will guide the scientist through a step by step process allowing them to carry out the treatment plan in an easy and seamless fashion.

Muriplan has been designed to mimic clinical practice by allowing the investigator to view the 3D reconstructed cone beam-CT image, register/fuse other images like MR and PET/CT, and contour the target as well as surrounding tissue. Furthermore, the capability to save a treatment plan and access it at a later time allows for increased workflow in fractionated treatment schedules. Along with evaluation and validation tools which include isodose lines and the ability to create a dose volume histogram (DVH), Muriplan allows for the control of all hardware components of SARRP included X-ray delivery, imaging, and robotics.

main-sarrp_0004_Xstrahl-sarrp-2

Pre-Clinical Results to Clinical Practice

Developed in house by Xstrahl, Muriplan allows researchers the versatility to create simple or complex beam arrangements in a clinically relevant way. From single planar static beams to parallel opposed beams, and continuous arc therapies to multiple isocenter treatments. Muriplan enables the ability to execute true non-coplanar beam arrangements, a common clinical practice.

Muriplan is designed to guide the researcher through the treatment planning process in a smooth and consistent manner. Easy to navigate, this treatment planning system is equipped with individual modules for each step to ensure the investigator has completed the necessary steps to proceed further. Although developed to mimic clinical practice, Muriplan’s user friendly design allows researchers from any academic and professional level to use the software successfully.

xenx-main-01_0005_xenx-1

Step-by-step guide to the Muriplan Planning System

  1. CT Acquisition – GPU based reconstruction reduces imaging time to 1min
  2. Simple Segmentation into Air, Lung, Fat, Tissue and Bone – Automatic process, can save values for different CT protocols
  3. Contouring – Includes tools for grey scale matching, paint and erase contours
  4. Beam Planning – Set isocenters add beams and arc deliveries. Prescribe dose to each isocenter
  5. Dose Computation – GPU based calculation, 7 sec/beam
  6. Verification – Isodose lines and Dose Volume Histograms
  7. Delivery – Beam cordinates and tretment time automatically loaded into the SARRP, click OK to deliver each beam

For more information about Muriplan get in touch.

  • The irradiation devices developed by Xstrahl for radiobiological research, both in vitro and in vivo, certainly are of outstanding quality in this field of research. We use the Xstrahl SARRP system successfully for our in-vivo-research on orthotopic small animal tumour models. With this system we are able to mimic the clinical situation and especially irradiation in mice much more precisely and easier than in former times.  So it helps us to make our research more reliable and more clinically relevant. From my point of view, the customer service provided by Xstrahl is close to perfect. All in all, the possibilities provided by Xstrahl's irradiation equipment, e.g to closely mimic the radiotherapeutic clinical routine in small animal models (CT-based treatment planning with the SARRP system) is absolutely outstanding.

    SARRP Postdoctoral Researcher, Ludwig Maximilian University of Munich, Munich, Germany
  • We have been using the CIX2 X-ray cabinet for some years for cell culture experiments, and it is one of the most frequently used machines in our lab. In my opinion, the x-ray irradiator is a great tool for the irradiation of cells in our research lab. The cabinet runs very stable and is easy to operate (even for non-experienced visitors) and offers all options needed for our research making it extremely user-friendly. The possibility to change the filters quickly and to work with different distances away from the x-ray tube markedly enlarges the spectrum of experiments, which can be performed, and the safety aspect is hereby a big advantage. Furthermore, the technical support of X-Strahl is an outstanding example of good customer service.

    CIX2 Postdoctoral Researcher, Ludwig Maximilian University of Munich, Munich, Germany
  • We have found SARRP an extremely valuable resource for pre-clinical work in which we aim to mimic clinical treatment regimens as closely as possible. SARRP enables efficient, accurate and reproducible pre-clinical radiotherapy that is especially valuable for assessing drug-radiation combinations in realistic schedules. We have been very impressed by the user-friendly interface in MuriPlan, which is straightforward for users and  can be interfaced with imaging modalities such as MRI and bioluminescence for optimised image-guided planning. SARRP has become central to our translational pipeline in radiation biology and comes with extremely good support and maintenance to take the stress out of running large pre-clinical experiments.

    SARRP & MuriPlan Professor of Clinical Oncology and Neuro-Oncology, Leeds Institute of Cancer and Pathology, Leeds University, Leeds, United Kingdom
  • Prior to acquisition of the SARRP we were left with an obvious and significant void in our pre-clinical arsenal to investigate existing and novel cancer therapies. The technological similarity of the SARRP with the medical systems in our clinic and availability of ongoing technical support from Xstrahl were decisive factors. The SARRP forms an integral part of our translational research pipeline and will greatly expand the capacity, potential and quality of our cancer and radiation research.

    SARRP Irradiator Manager, Royal North Shore Hospital & Research Director, Bill Walsh Translational Cancer Research, Sydney Vital, Sydney, Australia
  • SARRP has really made a significant impact in our lab, the ability to accurately target small volumes with image guidance hasn’t been possible before and we are now constantly evolving our approaches to leverage the technology to its maximum potential. Clearly our ability to delivery clinically relevant radiotherapy treatments in preclinical models has taken a major step forward, it up to us as a research community to translate this to the next generation of clinical innovatives

    SARRP Lead Lecturer of the Center of Cancer Research and Cell Biology, Leeds Institute of Cancer and Pathology, Queen's University, Belfast, United Kingdom